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Abstract

This paper proposes a rearrangement of Fry’s sigma-space which has translated stress tensor inversion into a concise geometric problem. The

kernel of our modification is in the normalisations of tensor invariants and in the adoption of weighting factors used in the studies of crystal

plasticity. After describing a fault-slip datum as a strain tensor, we mapped both stress and strain tensors onto the modified parameter space. There

are two main benefits. First, the geometry is simplified. The points representing normalised tensors are located on the five-dimensional unit sphere

and their relative arrangement is independent from the coordinate selection in physical space. Second, the Euclidean metric of the space was

equated to the so-called stress difference, a useful measure of difference between normalised stress tensors. This metric led us to a straightforward

method for quantifying the confidence region of stress tensor deduced through inversion.
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1. Introduction

Palaeostress analysis is the key to the elucidation of tectonic

events. A number of inversion techniques have been devised for

reconstructing stress tensors from fault-slip data (e.g. Carey and

Brunier, 1974; Angelier, 1979; Etchecopar et al., 1981; Gephart

and Forsyth, 1984; Simón-Gómez, 1986; Nemcok and Lisle,

1995; Yamaji, 2000; Shan et al., 2003). The latter five methods

attempt to separate multiple stress states from heterogeneous

data. Recently, Fry (1999, 2001) has proposed a geometrical

interpretation of the inverse problem using a six-dimensional

component-wise parameter space of stress tensor, which was

termed ‘s-space’. He clearly divided the problem into linear

and non-linear parts and specified the constraint on stress tensor

from a single fault-slip datum as a region in s-space.

The purpose of this study is to assess the significance of the

metric in the parameter space. Our formulation equates the

Euclidean distance to the stress difference (Orife and Lisle,

2003), which is a well-defined and convenient measure of

difference between normalised stress tensors. This metric

enables us to quantify the confidence region not of principal

orientations, but of the stress tensor itself. Furthermore, our
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modification simplifies the inverse problem into the geometry

on the five-dimensional unit sphere. The admissible region of

stress tensor constrained by a fault was clarified in a normalised

form.

The statistical reliability of the solution of the stress tensor

inversion has been intensively investigated with respect to the

effect of errors, biases and heterogeneity in the fault-slip data

(e.g. Etchecopar et al., 1981; Gephart and Forsyth, 1984; Choi

et al., 1996; Albarello, 2000; Yamaji, 2003; Xu, 2004). There is

a serious problem in estimating and even in defining the

variance of a tensor quantity. Orife and Lisle (2003) have

pointed out that any assessment of stress tensor should not be

based solely on orientations, since their stabilities depend on

the shape of stress ellipsoid or stress ratio and vice versa.

Yamaji et al. (2005) used the mean stress difference to estimate

the spread of stress tensors as a scalar value. The present article

aims to express the confidence region by a covariance matrix

including the anisotropy in the parameter space.

The next section provides the definition and mathematical

foundations of the reshaped parameter space. Sections 3 and 4

convert the stress tensor and fault-slip data into points on the

hypersphere, respectively. In Section 5, the geometrical

interpretation of stress tensor inversion (Fry, 1999, 2001) is

found to be valid for our parameter space with newly added

features. The numerical experiments in Section 6 confirm the

theoretical advantages of the new formulation. The method of

error estimation is presented in Section 7. The notation used in

this paper is listed in Table 1.
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Table 1

List of symbols in alphabetical order

Symbol Description Reference

b̂ The direction normal to both n̂ and v̂ Figs. 2 and 3

D Stress difference Eqs. (17) and (D.2)

d ðs½4� ðsKðm projected onto P4
m Eq. (50)

E Strain tensor Eq. (21)

E 0 Virtual strain tensor Eq. (23)

E1, E2, E3 Principal strains Eq. (25)

F Deformation gradient tensor Eq. (19)

ðF5
Map from symmetric and deviatoric tensor

to 5-D vector

Eq. (6)

ðF6
Map from symmetric tensor to 6-D vector Eq. (1)

G Displacement gradient tensor Eq. (19)

I 3-D unit tensor

JI First invariant (trace) Eq. (2)

JII Second invariant Eq. (3)

JIII Third invariant (determinant)

M Number of bootstrap iteration Section 7.1

n Factor specifying confidence level Eq. (51)

n̂ Fault normal Figs. 2 and 3

N Number of fault

P4
m 4-D plane normal to ðm Fig. 9

P5
p

5-D plane normal to ðp Eq. (4)

Q 6-D rotation tensor Eq. (A.1)

S Stress tensor, tension being positive Section 3

S1, S2, S3 Principal stresses, tension being positive

S5 5-D unit sphere Fig. 1

S6 6-D unit sphere Eq. (5)

t Traction vector Fig. 3

v̂ Slip direction Figs. 2 and 3

V[4] 4-D covariance matrix Eq. (50)

W Work done on a rock mass Eq. (36)

W 0 Virtual work done on a rock mass Eq. (38)

X A symmetric tensor Section 2

g Engineering shear strain Eqs. (19)–(21)

g 0 Engineering virtual shear strain Eqs. (22) and (23)

D Angular misfit Eqs. (45) and (46)

ð3, ð3½5� 5-D 3-vector Eq. (31)

ð3 0, ð3 0 ½5� 5-D 3 0-vector Eq. (32)

ð3½6� 6-D 3-vector Eq. (29)

ð3 0 ½6� 6-D 3 0-vector Eq. (30)

ðm 5-D mean s -vector Eq. (49)

ðp Unit normal of P5
p

Fig. 1

r Normalising factor Eq. (49)

s Stress tensor, compression being positive

s1, s2, s3 Principal stresses, compression being

positive

ðs, ðs½5� 5-D s-vector Eq. (15)

ðs½6� 6-D s-vector Eq. (14)

t Resolved shear stress on a fault surface Fig. 3

toct Octahedral shear stress Appendix D

F Stress ratio Eq. (C.1)
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2. Parameter space for tensor quantities

2.1. Definition

For the purpose of dealing with stress and strain tensors

equivalently, the parameter space was defined in a generalised

form for symmetric tensor quantities. We use the term ‘tensor’

to denote a second-rank tensor (matrix).

The parameter space is the six-dimensional Euclidean

space. We define a map, ðF6, which associates an arbitrary
symmetric tensor XZ{Xij} with a six-dimensional vector:

ðF6ðXÞh
X11ffiffiffi

2
p ;

X22ffiffiffi
2

p ;
X33ffiffiffi

2
p ; X23; X31; X12

� �T

: (1)

The superscript T represents the transpose of a vector or tensor.

We denote high-dimensional vectors with arrows, while

vectors and tensors in physical space are indicated by bold

letters.

The difference between ðF6 and the definition of s-space

(Fry, 1999, 2001) is in the diagonal components of X divided

by
ffiffiffi
2

p
. Such weight factors have been used in the theories of

plasticity (e.g. Takahashi et al., 1990; Levitas and Preston,

2002). They multiply the off-diagonal components by
ffiffiffi
2

p

instead of dividing the diagonal components.
2.2. Normalisations and their geometric meanings

In this paper, tensors are frequently normalised by two

conditions:

JIðXÞhX11 CX22 CX33 Z 0; (2)

JIIðXÞh
1

2
X2

11 CX2
22 CX2

33

� �
CX2

23 CX2
31 CX2

12 Z 1; (3)

where JI and JII are the first and second invariants of the tensor

(Fung, 1965, p. 80), respectively. The first normalisation makes

a tensor deviatoric. Note that the definition of the second

invariant in Eq. (3) is applicable only to deviatoric tensors.

These normalisations have geometric meanings. Let ðxZ
ðx1; x2;.; x6Þ

T be the vector ðF6ðXÞ in Eq. (1), then we can

rewrite Eqs. (2) and (3) as

x1 Cx2 Cx3 Z 0; (4)

x2
1 Cx2

2 Cx2
3 Cx2

4 Cx2
5 Cx2

6 Z 1: (5)

Eq. (4) represents a five-dimensional plane through the origin

of the parameter space and perpendicular to (1, 1, 1, 0, 0, 0)T.

We use the symbol P5
p for this plane and ðpZ

1ffiffi
3

p ; 1ffiffi
3

p ; 1ffiffi
3

p ; 0; 0; 0
� �T

for the unit vector parallel to the normal.

On the other hand, Eq. (5) represents the six-dimensional unit

sphere, which we refer to as S6. The normalised tensors are

represented by points on the intersection of P5
p and S6, which is

the five-dimensional unit sphere (Fig. 1). We use the symbol S5

for this hypersphere.

Since the vector ðF6ðXÞ has the end point on S5, it can be

expressed also as a five-dimensional vector through a simple

coordinate rotation (Appendix A):

ðF5ðXÞh K
1

2
ffiffiffi
2

p C
1

2
ffiffiffi
6

p

� �
X11C

1

2
ffiffiffi
2

p K
1

2
ffiffiffi
6

p

� �
X22C

1ffiffiffi
6

p X33;

�

1

2
ffiffiffi
2

p K
1

2
ffiffiffi
6

p

� �
X11K

1

2
ffiffiffi
2

p C
1

2
ffiffiffi
6

p

� �
X22C

1ffiffiffi
6

p X33;

X23; X31; X12

�T

; ð6Þ



Fig. 1. Schematic figure of six-dimensional parameter space. A symmetric

tensor X is normalised by JIZ0 and JIIZ1. The vector ðF6 Xð Þ lies on the unit

sphere S6 and the plane P5
p perpendicular to ðph 1ffiffiffi

3
p ; 1ffiffiffi

3
p ; 1ffiffiffi

3
p ; 0; 0; 0

� �T

.

Therefore, the existence region of ðF6 Xð Þ is the five-dimensional unit sphere S5,

which is shown as a bold great circle in this figure.
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where the second normalisation (Eq. (3)) corresponds to

ðF5ðXÞ
��� ���Z1: (7)

Note that ðF5ðXÞ and ðF6ðXÞ indicate the same object, and

especially:

ðF5ðXAÞK ðF5ðXBÞ

��� ���Z ðF6ðXAÞK ðF6ðXBÞ

��� ���; (8)

ðF5ðXAÞ$ ðF5ðXBÞZ ðF6ðXAÞ$ ðF6ðXBÞ; (9)

for any two symmetric matrices XA and XB.
2.3. Metric

The Euclidean metric in our parameter space is given by the

square root of the second invariant of the tensor (see Appendix

B for derivation). For any two symmetric and deviatoric

tensors XA and XB:

ðF5ðXAÞK ðF5ðXBÞ

��� ���Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J11ðXDÞ

p
; (10)

where XDZXAKXB. Furthermore, by setting XBZ0 in Eq.

(10), we have

ðF5ðXÞ
��� ���Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

J11ðXÞ
p

; (11)

for any symmetric and deviatoric tensor X. Any coordinate

rotation in physical space does not affect the metric in the

parameter space owing to the nature of invariant.
3. Mapping stress tensor onto parameter space

3.1. s-vector

Except for Sections 6 and 7 and Appendices A and B, this

paper uses the sign convention of continuum mechanics, i.e.

tension is positive for the stress tensor denoted by SZ{Sij} (i,

jZ1, 2, 3). A stress tensor, which is assumed to be symmetric,

has six independent components. However, the stress tensor

inversion can constrain only four degrees of freedom (see

Section 5.1 for the reason for this reduction). The normalised

stress tensor, the so-called ‘reduced stress tensor’ (Angelier,

1984), can be described by principal orientations and a stress

ratio (Eq. (C.1)).
Since two normalisations can be freely chosen, we adopt

JIðSÞZ 0; JIIðSÞZ 1: (12)

A practical form of these normalisations is presented in

Appendix C. The first normalisation was also used by Fry

(1999). However, he adopted the constraint:

S2
11 CS2

22 CS2
33 CS2

23 CS2
31 CS2

12 Z 1; (13)

instead of the second one. The left-hand side of Eq. (13) is not

an invariant of the stress tensor, namely, the principal values of

normalised stress tensor depend on the coordinate system. Our

normalisations avoid this problem.

According to Eq. (1), a reduced stress tensor is mapped onto

the parameter space:

ðs½6� h ðF6ðSÞZ
S11ffiffiffi

2
p ;

S22ffiffiffi
2

p ;
S33ffiffiffi

2
p ; S23; S31; S12

� �T

; (14)

where the vector ðs½6� was termed ‘s-vector’, following Fry

(1999). Since the normalisations (Eq. (12)) are identical to

those in Section 2.2, we have the five-dimensional expression

of the s-vector:

ðs½5�h ðF5ðSÞZ K
1

2
ffiffiffi
2

p C
1

2
ffiffiffi
6

p

� �
S11C

1

2
ffiffiffi
2

p K
1

2
ffiffiffi
6

p

� �
S22C

1ffiffiffi
6

p S33;

�

1

2
ffiffiffi
2

p K
1

2
ffiffiffi
6

p

� �
S11K

1

2
ffiffiffi
2

p C
1

2
ffiffiffi
6

p

� �
S22C

1ffiffiffi
6

p S33;

S23; S31; S12

�T

; ð15Þ

Its existence region is the five-dimensional unit sphere S5:

ðs½5�
�� ��Z 1: (16)
3.2. Embedded stress difference

The metric in the parameter space has a significant physical

meaning, the stress difference D (Orife and Lisle, 2003). We

found an equivalent formulation of stress difference to the

original definition (Appendix D):

DðSA; SBÞh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J11ðSDÞ;

p
(17)

where both SA and SB are normalised by Eq. (12) and SDZ
SAKSB is called the ‘difference tensor’. The stress difference is

a function of SA and SB and its value ranges from 0 to 2. DZ0

for identical tensors, while DZ2 when the two tensors are

‘negative tensors’ to each other (SAZKSB).

Combining Eqs. (10) and (17), we have

ðF5ðSAÞK ðF5ðSBÞ

��� ���ZDðSA; SBÞ: (18)

The stress difference can be measured as the Euclidean

distance in the parameter space. When we have some scattered

points indicated by s-vectors on S5, they are separated

according to the stress differences between corresponding
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reduced stress tensors. For instance, take a stress tensor and its

negative tensor represented by ðs½5� and Kðs½5�, respectively.

They are antipodal points and their Euclidean distance equals

two, which is the diameter of the unit sphere S5. This value is

expectedly the maximum stress difference DZ2.

4. Mapping fault-slip data onto parameter space

4.1. Introduction of strain tensor

This subsection introduces a strain tensor as an equivalent of

a fault-slip datum. A datum can be described by the fault

normal n̂ pointing outward from the footwall block and the slip

direction of the block v̂ (Fig. 2a). We utilise another vector b̂ on

the fault plane at right angles to v̂. Hereafter, bold letters with

hats denote unit vectors in physical space.

We assume the strain caused by a fault to be simple shear

(Fig. 2b). When we take the vectors v̂, b̂ and n̂ as Cartesian

coordinate axes, which we call ‘fault coordinate system’, the

deformation gradient tensor F (e.g. Khan and Huang, 1995,

p. 52) and the displacement gradient tensor G for the simple

shear are

FZ

1 0 Kg

0 1 0

0 0 1

0
B@

1
CA; GZFKIZ

0 0 Kg

0 0 0

0 0 0

0
B@

1
CA; (19)

where g is the engineering shear strain, and I is the unit tensor.

Accordingly, Cauchy’s strain tensor (e.g. Fung, 1965, p. 94) is

EZ
1

2
GCGT
� �

ZK
g

2

0 0 1

0 0 0

1 0 0

0
B@

1
CA; (20)

where extension is positive. In general coordinate system:

EZK
g

2
v̂ b̂ n̂
� � 0 0 1

0 0 0

1 0 0

0
B@

1
CA v̂ b̂ n̂
� �T

ZK
g

2

2v1n1 v1n2 Cv2n1 v3n1 Cv1n3

v1n2 Cv2n1 2v2n2 v2n3 Cv3n2

v3n1 Cv1n3 v2n3 Cv3n2 2v3n3

0
B@

1
CA; (21)
Fig. 2. (a) A fault-slip datum described by the fault normal n̂ and the slip direction

deformation approximating the fault-slip datum in (a). (c) The virtual shear deform
where ðv̂ b̂ n̂Þ is the orthonormal matrix that rotates the

coordinate axes.

For the convenience in formulating stress tensor inversion in

Section 5, we compose a virtual strain tensor representing the

imagined displacement in the direction of b̂ on the fault plane

(Fig. 2c):

E0 ZK
g0

2

0 0 0

0 0 1

0 1 0

0
B@

1
CA; (22)

which is expressed in the fault coordinate system, where g 0 is

again the engineering shear strain. In general coordinates:

E0 ZK
g

2

2b1n1 b1n2 Cb2n1 b3n1 Cb1n3

b1n2 Cb2n1 2b2n2 b2n3 Cb3n2

b3n1 Cb1n3 b2n3 Cb3n2 2b3n3

0
B@

1
CA:

(23)
4.2. Normalisation of strain tensor

Since the stress tensor inversion does not need the amount of

displacement and the volume of rock mass deformed by a fault,

we need not specify g in the observation. Then we normalise it

as

gZ 2: (24)

On this normalisation, the principal strains are calculated

from Eq. (20) to be

E1 Z 1; E2 Z 0; E3 ZK1: (25)

The basic invariants are, therefore:

JIðEÞhE1 CE2 CE3 Z 0; (26)

JIIðEÞhKE2E3KE3E1KE1E2 Z 1; (27)

JIIIðEÞhE1E2E3 Z 0; (28)

where JIII is the third invariant (determinant). The same

normalisation was assigned to the virtual strain tensor E 0, i.e.

g 0Z2. Note that a normalised strain tensor E alone is

equivalent to a fault-slip datum.
v̂. The vector b̂ is on the fault plane at right angles to v̂. (b) The simple shear

ation in the direction b̂.



Fig. 3. Explanation for the Wallace–Bott hypothesis. Unit vectors n̂, v̂ and b̂ are

the same as those in Fig. 2. The vector t is the traction exerted on the footwall

block. The projection of t onto the fault surface gives the shear stress t. The

hypothesis states that v̂ and t point in the opposite direction, i.e. t should make

an obtuse angle with v̂ and be perpendicular to b̂.
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The physical meanings of the three normalisations are clear.

Eq. (26) represents the constant volume condition, while Eq.

(28) implies plane strain. These two are equivalent to the

assumption of simple shear. Eq. (27) reflects Eq. (24), reducing

the information on the amount of strain.

4.3. 3-vector and 3 0-vector

According to our definition of parameter space (Eq. (1)), we

can construct a six-dimensional vector from the strain tensor:

ð3½6�h ðF6ðEÞZ
E11ffiffiffi

2
p ;

E22ffiffiffi
2

p ;
E33ffiffiffi

2
p ; E23; E31; E12

� �T

ZK
ffiffiffi
2

p
v1n1;

ffiffiffi
2

p
v2n2;

ffiffiffi
2

p
v2n2;

�
v2n3Cv3n2; v3n1Cv1n3; v1n2Cv2n1

�T

; ð29Þ

which we named ‘3-vector’. Similarly, the virtual strain tensor

is mapped into

ð3 0
½6�h ðF6ðE

0ÞZ
E 0

11ffiffiffi
2

p ;
E0

22ffiffiffi
2

p ;
E0

33ffiffiffi
2

p ; E0
23; E

0
31; E

0
12

� �T

ZK
ffiffiffi
2

p
b1n1;

ffiffiffi
2

p
b2n2;

ffiffiffi
2

p
b2n2;

�
b2n3Cb3n2; b3n1Cb1n3; b1n2Cb2n1

�T

; ð30Þ

which we call ‘30-vector’ in the following.

Since Eqs. (26) and (27) are the same normalisations as Eqs.

(2) and (3), 3- and 3 0-vectors have the five-dimensional

expressions:

ð3½5�h ðF5ðEÞZ
1ffiffiffi
2

p C
1ffiffiffi
6

p

� �
v1n1K

1ffiffiffi
2

p C
1ffiffiffi
6

p

� �
v2n2K

ffiffiffi
2

3

r
v3n3;

 

K
1ffiffiffi
2

p K
1ffiffiffi
6

p

� �
v1n1C

1ffiffiffi
2

p C
1ffiffiffi
6

p

� �
v2n2K

ffiffiffi
2

3

r
v3n3;

Kv2n3Kv3n2;Kv3n1Kv1n3;Kv1n2Kv2n1

!T

;

(31)

ð3 0
½5�
h ðF5ðE

0ÞZ
1ffiffiffi
2

p C
1ffiffiffi
6

p

� �
b1n1K

1ffiffiffi
2

p C
1ffiffiffi
6

p

� �
b2n2K

ffiffiffi
2

3

r
b3n3;

 

K
1ffiffiffi
2

p K
1ffiffiffi
6

p

� �
b1n1C

1ffiffiffi
2

p C
1ffiffiffi
6

p

� �
b2n2K

ffiffiffi
2

3

r
b3n3;

Kb2n3Kb3n2;Kb3n1Kb1n3;Kb1n2Kb2n1

!T

;

(32)

Their common existence region is the five-dimensional unit

sphere S5:

ð3½5�
�� ��Z 1; ð3 0

½5�
��� ���Z 1: (33)
Evaluated in the fault coordinate system (Eqs. (20) and

(22)), the vectors ð3½6� and ð3 0½6� are perpendicular to each other:

ð3½6�$ð3 0
½6� Z

1

2
E11E

0
11 CE22E

0
22 CE33E

0
33

� �
CE23E

0
23

CE31E
0
31 CE12E

0
12

Z 0: (34)

Since the distance in the parameter space is an invariant of

the difference tensor (Section 2.3), the scalar product, which is

the cosine of the angular distance between two unit vectors, is

independent of reference frame in physical space. Therefore,

Eq. (34) is valid for any coordinate system.
5. Stress tensor inversion in parameter space

5.1. The Wallace–Bott hypothesis

Recent inversion methods are based on the Wallace–Bott

hypothesis (Wallace, 1951; Bott, 1959), which states that a

fault slips in the direction of resolved shear stress exerted on

the fault surface (Fig. 3). The condition for a single fault is

formulated as

v̂ZKt= tj j; (35)

where t is the resolved shear stress, which is obtained by

projecting the traction vector t onto the fault plane. Cauchy’s

formula, tZSn̂, gives the traction vector from an assumed

stress tensor S. An optimal stress tensor is determined

essentially by minimising the angular misfits between observed

slip directions and theoretical ones given by Eq. (35).

The reduction of the determinable variables of the stress

tensor (Section 3.1) is ascribed to the Wallace–Bott hypothesis.

We cannot distinguish an arbitrary stress tensor S and its linear

combination (aSKbI), where a and b are arbitrary real

numbers, since they give the same direction of shear stress on

any fault surfaces (Etchecopar et al., 1981; Angelier, 1984).

The parameter a specifies the magnitude of confining pressure

that can be considered as a function of the depth of faulting,
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while b corresponds to the pore fluid pressure. Conversely, we

need not worry about these parameters and can freely choose

two normalisations.
Fig. 4. Schematic figure showing the constraint on the stress tensor from a

single fault. The vectors ðs, ð3 and ð3 0 on the five-dimensional unit sphere S5

represent s-, 3- and 3 0-vectors, respectively. The Wallace–Bott hypothesis

restricts ðs on the surface of the hemisphere of which pole is ð3 (shaded region)

and on the great circle perpendicular to ð3 0. Consequently, ðs should be on the

half great circle shown by the bold line. Note that the great semicircle actually

has an expanse of three dimensions.
5.2. Wallace–Bott hypothesis in parameter space

The Wallace–Bott hypothesis specifies possible stress

tensors required to activate a given fault. Fry (2001) has

described the admissible region of s-vector in his s-space.

However, since the discussion was generalised to deal with

magnitudes of stress, he did not employ the normalisations of

stress tensor. This subsection introduces the admissible region

of normalised s-vector from the viewpoint of energy balance.

When a fault is activated, the work done on the rock mass by

the external tectonic stress is

Wh
1

2
E : SZ

1

2

X3

i;jZ1

EijSij

Z
1

2
E11S11 CE22S22 CE33S33

� �
CE23S23 CE31S31

CE12S12

Z ð3½6�$ðs½6�: (36)

TheWallace–Bott hypothesis naturally requires the energy

dissipation through the faulting to be positive:

W Z ð3½6�$ðs½6�O0: (37)

On the other hand, the virtual work related to the virtual

strain tensor E 0 (Section 4.1) should be zero, because the

exerted traction vector t is required to be perpendicular to the

imagined slip direction b̂ (Figs. 2c and 3). Accordingly:

W 0 h
1

2
E0 : SZ ð30

½6�
$ðs½6� Z 0: (38)

Eqs. (37) and (38) are equivalent to the Wallace–Bott

hypothesis (Eq. (35)), which we can verify from a kinematic

viewpoint. Following Fry (2001), we divided the hypothesis

into two parts as is visualised in Fig. 3. Firstly, t and v̂ should

meet at an obtuse angle to be concordant with observed shear

sense. Secondly, t and b̂ should be perpendicular to each other

to make the shear stress t parallel to v̂. These conditions are

formulated as

v̂$tZ v̂$Sn̂Z
X3

i;jZ1

viSijnj ZKð3½6�$ðs½6�!0; (39)

b̂$tZ b̂$Sn̂Z
X3

i;jZ1

biSijnj ZKð3 0½6�$ðs½6� Z 0; (40)

which are identical to Eqs. (37) and (38), respectively.

In the following equations, the superscript showing the

dimension ‘[5]’ is omitted, namely, ðsh ðF5ðSÞ, ð3h ðF5ðEÞ

and ð3 0 h ðF5ðE
0Þ. Noting Eq. (9), we can now rewrite the

Wallace–Bott hypothesis from Eqs. (16), (33), (34), (37) and
(38) as

ð3$ðsO0; (41)

ð3 0$ðs Z 0; (42)

where

ðsj jZ ð3j jZ ð3 0
�� ��Z 1; (43)

ð3$ð3 0 Z 0: (44)

Eqs. (41) and (42) have similar forms to those proposed by

Fry (2001), while the simple features of Eqs. (43) and (44) are

available uniquely in the present formulation.

The s-vector is required to make an acute angle with the

3-vector and to be perpendicular to the 3 0-vector (Fig. 4). On the

five-dimensional unit sphere S5, the s-vector ðs should be in

the hemisphere of which pole is ð3 and on the great circle

normal to ð3 0. The intersection between the hemisphere and the

great circle is half a great circle, which has an expanse of three

dimensions. Consequently, a fault-slip datum specifies its own

great semicircle on S5 and constrains the s-vector on it based

on the Wallace–Bott hypothesis. This simplified admissible

region of s-vector is an equivalent of McKenzie’s (1969)

solution described by principal orientations and stress ratios.
5.3. Angular misfit in parameter space

For the stress tensor inversion techniques, the angular misfit

between the directions of observed slip and resolved shear

stress is an essential parameter used as the objective function to

be minimised. Our parameter space involves the angular misfit

in its geometry. Fig. 5a shows that the angular misfit is

DZ tanK1 K
b̂$t
�� ��
v̂$t

 !
ð08%D%1808Þ: (45)



Fig. 5. (a) Angular misfit in physical space. All vectors are the same as those in Figs. 2 and 3. Given a reduced stress tensor, the angular misfit D is the angle between v̂

and Kt (see Eq. (35)), which can be rewritten using the direction cosines of the traction vector t for b̂ and v̂. (b) Angular misfit in the parameter space. A fault-slip

datum is represented by 3-vector ð3 and 30-vector ð3 0. When a s-vector ðs is orthogonally projected onto ð3Kð3 0 plane to be ðs* , the angular misfit D is the angle between ð3
and ðs* . The angle can be interpreted as the misfit of ðs to the constraint of the great semicircle specified by the fault (bold line). See text for derivation.
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Combining Eqs. (39) and (40), we can rewrite Eq. (45) as

DZ tanK1 jð3 0$ðsj

ð3$ðs

� �
ð08%D%1808Þ: (46)

When we take 3- and 3 0-vectors as coordinate axes in the

parameter space, the scalar products in Eq. (46) are direction

cosines of ðs for the two axes. Let ðs* be the orthogonal

projection of ðs onto the two-dimensional ð3Kð3 0 plane. Then,

the angular misfit D is equivalent to the angle between ð3 and ðs*

(Fig. 5b).

The angular misfit straightforwardly evaluates the deviation

of assumed s-vector from the admissible region of the great

semicircle (Figs. 4 and 5b). This geometric interpretation

theoretically supports the minimisation of angular misfits in the

classical inversion techniques and shows the affinity of our

parameter space with the physical space.
Fig. 6. Schematic figure showing the principle of eigenvector method of stress

tensor inversion. The vectors ð3 0 and ðs represent 30- and s-vectors, respectively.

ðs can be determined as the pole of the great circle that is fitted to the 3 0-vectors.

The conditions of shear senses constrain the polarity of ðs.
5.4. Inversion as an eigenproblem

The inequality (Eq. (41)) and the equality (Eq. (42)) show

the non-linear and linear relationships between observable fault

parameters and unknown variables of reduced stress tensor,

respectively. The stress tensor inversion can be geometrically

solved based on the linear aspect. When we have N fault-slip

data, N 3 0-vectors are constructed as points on S5. To satisfy the

orthogonal condition (Eq. (42)), the optimal orientation of

s-vector is given as the pole of the great circle fitted to the 3 0-

vectors (Fig. 6).

The fitting is achieved by solving an eigenproblem for the

moment of inertia tensor of 3 0-vectors (Fry, 1999; Shan et al.,

2003):

PZ
XN
iZ1

½ð3 0
ðiÞ
�½ð3 0

ðiÞ
�T; (47)

where ð3 0ðiÞ is 3 0-vector of ith datum. The 5!5 matrix P is an

orientation matrix (e.g. Fisher et al., 1987, p. 33) extended to

five dimensions. Since the length of a source vector works as a

weight factor in its direction, all 3 0-vectors must have unit
lengths, which is satisfied by the present formulation. The

eigenvector for the minimum eigenvalue gives the optimal

orientation of s-vector. If we compose the orientation matrix

from the six-dimensional expressions of 3 0-vectors, the

resultant 6!6 orientation matrix has a zero eigenvalue for a

eigenvector parallel to ðp because of the first normalisation

(Eq. (2)). In this case, the eigenvector for the second smallest

eigenvalue is the optimal solution (Fry, 1999).

We have to choose a pole from two intersection points

between S5 and the line parallel to the eigenvector (Fig. 6).

This choice of sign of ðs is the non-linear part of inversion and

is made according to the constraints of shear senses (Eq. (41)).

If the fault-slip data is homogeneous, namely all faults were

activated by a single stress, one of the poles can satisfy all

conditions of observed N shear senses, while the other cannot at

all.

The above method is called the ‘eigenvector method’ in the

following discussions. Although this method instantly gives the

optimal solution, it is not applicable to heterogeneous fault-slip

data recording multiple stress states. First of all, 3 0-vectors of

such a dataset do not lie on a single great circle. Second, the

conditions of shear senses will not be satisfied simultaneously.

As a special case of the eigenvector method, suppose that

there are just four fault-slip data observed. If their 3 0-vectors
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are linearly independent, the inversion becomes an even-

determined problem, since four vectors are just necessary to

constrain a four-dimensional great circle on the five-

dimensional sphere. In this case, the optimal stress tensor

completely explains the slip orientations. The s-vector can be

calculated as a five-dimensional vector product of the four 3 0-

vectors. Nevertheless, the constraints of shear senses are again

ignored in this method and, hence, they must be checked

separately.
6. Test of formulation

6.1. Bias on distribution

The distributions of the vectors in the parameter space have

essential roles in the stress estimation. However, as is shown

below, the conventional formulation (Fry, 1999) has some bias

on the distribution, while the present one can settle this

problem.

A random fault-slip dataset was generated for the test on

bias. The fault normals are randomly oriented on the three-

dimensional unit sphere and the slip directions are also

randomly assigned to the fault planes. The random faults are

expected to yield no concentrated region in the distribution of

3 0-vectors. Using the present and the conventional formu-

lations, we calculated the six-dimensional orientation matrices

(Section 5.4) for 100,000 3 0-vectors.

Table 2 shows the eigenvalues and the eigenvectors. Note

that the first three dimensions of eigenvectors are the diagonal

components of tensors in physical space and the rest are the off-

diagonal ones (Eq. (1)). The smallest eigenvalues of both

formulations equal zero and their eigenvectors are parallel to ðp
because of the normalisation of first invariant. As for the

present formulation, the other five eigenvalues have almost the

same magnitude, showing the isotropic distribution. No

preferred orientation was observed in the eigenvectors.
Table 2

Eigenvalues and eigenvectors of the orientation matrices for 3 0-vectors of 100,00

normalisation. The present formulation gives the isotropic distribution, while the c

diagonal directions. The italic values show relatively large components in the eige

Ranking Eigenvalue Eigenvector

Diagonal components

(!104) x1 x2 x

Present formulation

1st 0.0000 0.5774 0.5774

2nd 1.9803 0.3022 K0.6384

3rd 1.9947 0.3868 0.1776 K

4th 2.0020 K0.1107 K0.2438

5th 2.0088 0.6001 K0.2771 K

6th 2.0142 K0.2310 0.3023 K
Conventional formulation

1st 0.0000 0.5774 0.5774

2nd 1.4256 0.2361 K0.7949

3rd 1.4347 0.7816 K0.1863 K
4th 2.3711 K0.0069 0.0094 K

5th 2.3785 0.0026 K0.0009 K

6th 2.3900 K0.0008 0.0042 K
Meanwhile, the conventional formulation resulted in two

smaller eigenvalues and three larger ones. The eigenvectors for

the smaller two have large diagonal components with

negligible off-diagonal components, while those for the larger

three conversely have large weights in off-diagonal directions

(underlined components in Table 2). This background will

incline the optimal solution to have large diagonal components.

The difference between formulations can be geometrically

explained. Fig. 7a schematically shows the isotropic distri-

bution of 3 0-vectors according to the present formulation. The

conventional formulation (Fry, 1999) uses the ‘f-pole vector’:

ðpZðb1n1; b2n2; b3n3; b2n3Cb3n2; b3n1Cb1n3; b1n2Cb2n1Þ
T;

(48)

in the eigenvector method. Except for the sign convention, the

difference with our 30-vector (Eq. (30)) is in the first three

components without
ffiffiffi
2

p
factors. Since the conventional

s-vector also does not have the
ffiffiffi
2

p
factors, the orthogonal

condition between s- and 30-vectors is available for f-pole

vectors. The lack of the factors results in some contraction of

the unit sphere only in the diagonal directions (Fig. 7b).

According to Fry (1999), the length of the f-pole vector is

normalised to be unity in order to calculate the orientation

matrix (Fig. 7c). As a result, the normalised f-pole vectors are

concentrated in the off-diagonal directions. The above

distortion will lower the accuracy of the optimal solution,

while our formulation is free from this problem. Sections 6.2

and 7.4 include the experimental comparison of accuracies

between these formulations.
6.2. Independence from coordinate selection

The present parameter space is formulated using invariants

of stress and strain tensors. This subsection confirms that the

distribution of vectors in the parameter space is independent

from the choice of coordinate system in physical space.
0 random faults. The smallest eigenvalue is intrinsically zero owing to the

onventional formulation makes some anisotropy between the diagonal and off-

nvectors

Off-diagonal components

3 x4 x5 x6

0.5774 0.0000 0.0000 0.0000

0.3362 0.3320 K0.3528 0.3917

0.5645 0.4162 K0.4806 K0.3100

0.3544 K0.3346 K0.4242 K0.7147

0.3230 K0.6571 0.1536 0.0579

0.0713 K0.4158 K0.6641 0.4861

0.5774 0.0000 0.0000 0.0000

0.5588 0.0037 K0.0079 0.0079

0.5953 0.0047 K0.0045 0.0006

0.0025 0.7061 K0.4494 0.5471

0.0017 K0.0901 0.7094 O0.6991

0.0034 K0.7023 K0.5429 0.4604
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Fig. 7. Schematic figure showing the distribution of 3 0-vectors for random fault-slip data in each formulation (Section 6.1). (a) The present definition. The data

correspond to isotropically distributed 3 0-vectors on the five-dimensional unit sphere (black circles). (b) The conventional 3 0-vectors (f-pole vectors) without

normalisation (black circles). Gray circles show the corresponding vectors of the present definition. (c) The f-pole vectors (black circles) normalised to have unit

lengths. The distribution is distorted from the isotropic one. Grey circles are the vectors before normalisation.
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Two coordinate systems were used to analyse an artificial

fault-slip dataset including 10,000 faults with randomly

oriented fault normals. The coordinate system A has the axes

oriented eastward, northward and upward. The coordinate

system B has the second and third axes inclined by 458

northward and southward, respectively (Fig. 8). The slip

directions were calculated according to an arbitrary chosen

stress state with perturbation in rake angles of the directions

obeying the normal distribution. We set an extremely large

standard deviation of 608 for the perturbation not to simulate

natural data, but to make a theoretical consideration. Although

the 3 0-vectors will be widely distributed on S5, the optimal

solution should converge at the correct solution owing to the

large number of faults.

The eigenvector method with our formulation gave exactly

the same solutions for the different coordinate systems

(Fig. 8a). Their accuracy can be measured by the stress

difference to the given stress. The stress differences for the two

coordinate systems are equal and sufficiently small (DZ
0.0162). On the other hand, when the conventional formulation

is used, the solutions are different (Fig. 8b). The solution from
Fig. 8. The resultant stresses from the artificial fault-slip dataset with known solution

coordinate axes are indicated by circled numbers. Principal stress axes are shown in

for the minimum compression as diamonds). Open and solid symbols show the axes

in the figures. (a) The results from the present formulation. The two coordinate

conventional formulation resulted in different solutions between the coordinate sys
coordinate system A is rather far from the given stress (DZ
0.3182), while that from the coordinate system B has a better

accuracy (DZ0.0788). Note that the principal axes of the

conventional solutions are inclined toward each coordinate axis

(Fig. 8b) so that the optimal reduced stress tensors have large

diagonal components. This kind of bias was predicted in the

previous subsection.

Actually, the above-mentioned problem in the conventional

formulation is not so serious for practical measurement errors

(less than 108). If the number of faults is not as large (several

tens to hundreds), the perturbation from other sources such as

spatial and temporal variations of stress field will be more

effective than the bias from the formulation.
7. Error estimation in stress tensor inversion

Orife and Lisle (2003) has proposed a measure of

concentration of reduced stress tensors. That is the octahedral

shear stress of the averaged tensor of them, which was

experimentally found to range from 0 to 1. The larger the value

becomes, the more concentrated the tensors are. We can now
. The calculations were carried out in two coordinate systems, A and B, of which

the geological convention (s1 for the maximum compression as triangles and s3

obtained from coordinate systems A and B, respectively. Stress ratios are noted

systems gave the same stress state and the symbols are overlapped. (b) The

tems. See text for the accuracies of solutions (Section 6.2).
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interpret their measure as the length of averaged s-vector

(without normalisation onto the unit sphere), since the

octahedral shear stress is proportional to the square root of

the second invariant (see Eqs. (11) and (C.7)). The mean vector

length is a simple and well-used measure of concentration for

directional vectors.

However, the above measure is a scalar value. The

distribution of s-vectors, each of which has four degrees of

freedom, can be anisotropic in the parameter space. This

section provides a straightforward method that can quantify the

anisotropy. The method can be used for the error estimation of

stress tensor inversion.
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Fig. 10. Confidence level calculated from probability density function of four-

dimensional normal distribution. The horizontal axis is the factor n, which

specifies the confidence level of nKs confidence ellipsoid. Note that 1Ks

region achieves only a 9% confidence level.

Fig. 9. Geometrical definition of confidence region for reduced stress tensor

(analogue of five-dimensional figure). The vectors ðs are the bootstrapped

solutions (s-vectors) of the eigenvector method and ðm is their normalised mean

vector. The difference vectors ðsKðm are orthogonally projected onto the four-

dimensional plane P4
m, which is tangent to the unit sphere S5 at the end point of

ðm. The covariance matrix V[4] is calculated from the projected vectors d ðs½4�.

The eigenvalues and eigenvectors of V[4] are the principal radii and directions

of the confidence ellipsoid.
7.1. Definition of the confidence region

For the purpose of estimating the variance of reduced stress

tensor determined by inversion, the bootstrap method (Efron,

1979) was employed. When there are N fault-slip data, the

bootstrap method randomly extracts a fault N times with

replacement. Accordingly, an extracted dataset has N faults and

probably includes identical ones. Such a generation of dataset

is repeated M times and optimal s-vectors are determined for M

datasets by the eigenvector method (Section 5.4).

The best estimate of the s-vector is given by the mean

direction of M solutions:

ðm Z
1

r

XM
iZ1

ðsðiÞ; (49)

where ðsðiÞ is the solution obtained from ith extracted dataset,

and r is the normalising factor (rZ SðsðiÞ
�� ��). Each s-vector has

four degrees of freedom and lies on the four-dimensional

surface of the unit sphere S5. Therefore, their variance should

be estimated by a four-dimensional covariance matrix. For ith

dataset, the difference vector ðsðiÞKðm is orthogonally projected

onto the four-dimensional plane P4
m which is tangent to S5 at the

end point of ðm (Fig. 9). The projected vector, which is denoted

by d ðs½4�ðiÞ, gives the four-dimensional covariance matrix as

V½4� Z
1

M

XM
iZ1

d ðs½4�ðiÞ
	 


d ðs½4�ðiÞ
	 
T

: (50)

The projection does not distort the distribution only when

the s-vectors are sufficiently concentrated around the mean

direction.

Assuming that the bootstrapped solutions obey the four-

dimensional normal distribution, we constructed the confi-

dence ellipsoid as

d ðs½4�
	 
T

n2V½4�
	 
K1

d ðs½4�
	 


Z 1: (51)

The scalar factor n specifies the confidence level to give the

so-called ‘nKs region’, where the symbol s roughly denotes

the standard deviation. Note that V[4] has four eigenvalues and

their square roots (standard deviations) multiplied by n are the

principal radii of the confidence ellipsoid. Our formulation

gives the radii in the measure of stress difference if they are so

small that the distortion caused by the projection is negligible.
As to the four-dimensional normal distribution, the standard

confidence region (nZ1) corresponds to only 9% of the

confidence level (Fig. 10). We shall visualise 59% (2Ks) or

94% (3Ks) ellipsoids as confidence regions.
7.2. Visualisation of four-dimensional confidence ellipsoid

The four-dimensional confidence ellipsoid is visualised by

using s-vectors contained in the region. Uniformly distributed

60,000 s-vectors (Sato and Yamaji, 2006) are used to test

whether they are in the ellipsoid or not. The corresponding

reduced stress tensors are plotted on the paired stereograms of

Yamaji (2000), which can simultaneously show the orien-

tations of s1 and s3 axes and the stress ratio.

To show examples of visualisation, artificial covariance

matrices V½4�
isotropic and V½4�

anisotropic were generated. They

represent isotropic (spherically symmetric) and anisotropic

distributions, respectively. The principal radii of standard
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ellipsoids (square roots of eigenvalues) were given as

V½4�
isotropic : 0:1; 0:1; 0:1; 0:1ð Þ;

V½4�
anisotropic : 0:2; 0:1; 0:1; 0:05ð Þ:

Note that two ellipsoids have the same volume, since the

products of the four radii are equal. They had a common centre

ðm that corresponds to the reduced stress tensor of which s1 and

s3 axes are oriented to 180/45 and 000/45, respectively, with a

stress ratio of FZ0.25 (see Appendix C for the definition of

F). In what follows, we use the geological sign convention that

compression is positive to describe the principal stresses with

the symbols s1, s2 and s3.

Fig. 11 shows the visualised variances. A tadpole-like

symbol represents a reduced stress tensor (Yamaji, 2000).

Orientations of s1 axes are plotted as ‘heads’ (small squares) in

each left-hand stereogram. The lengths and directions of

attached ‘tails’ (bars) indicate orientations of s3 axes, as if

there were small stereograms around the ‘heads’. The right-

hand stereograms are complementary ones in which the roles of

‘heads’ and ‘tails’ are interchanged, i.e. the ‘heads’ are s3 axes

and the ‘tails’ are s1 axes. The greyscale colours of tadpoles

indicate the values of stress ratios.

The isotropic covariance V½4�
isotropic resulted in the principal

stress axes and the stress ratios, which are symmetrically

distributed with respect to the principal stress planes of ðm
(Fig. 11a and b for 59 and 94% confidence regions,

respectively). The lower the stress ratio is (dark colours), the
Fig. 11. Paired stereograms visualising the artificial confidence ellipsoids. The given

corresponding principal stress planes are shown by broken lines. Figures (a) and (b)

covariance matrix, V½4�
isotropic, while figures (c) and (d) show those for an anisotropic o

s-vectors are included in the confidence regions. See text for the method of plottin
broader the s3 axes are scattered on the principal plane normal

to the s1 axis of ðm. This observation shows the interdependence

between the dispersion of principal orientation and that of

stress ratio. The confidence regions of the anisotropic

covariance V½4�
anisotropic are shown in Fig. 11c (59%) and

Fig. 11d (94%). They show distorted patterns, compared with

the isotropic case.

7.3. Numerical experiment 1

With the bootstrapped inversion method, an artificial fault-

slip dataset (Fig. 12a) was analysed to estimate the confidence

region of the optimal solution. The dataset includes NZ20

faults and their fault planes are randomly oriented. An

arbitrarily chosen stress state

s1Kaxis : 154=43; s3Kaxis : 264=20; FZ 0:304

was assigned to the faults and theoretical slip directions were

calculated according to the Wallace–Bott hypothesis. Angular

random errors were imposed on the slip directions, which

obeyed the normal distribution with the mean of zero and the

standard deviation of 158. The bootstrap resampling was

repeated MZ200 times.

All stress tensors output by the eigenvector method are

plotted on Fig. 12b. Their mean solution

s1Kaxis : 159=37; s3Kaxis : 263=19; FZ 0:340;

is roughly equal to the correct solution, although the

perturbation of 158 is large. Fig. 12c shows the 94% confidence
centre of ellipsoid, which is assumed to be the mean s-vector, is common and its

show 59 and 94% confidence regions for an isotropic (spherically symmetric)

ne, V½4�
anisotropic. They were visualised by plotting reduced stress tensors of which

g reduced stress tensors.



Fig. 12. (a) The perturbed fault-slip data used in the numerical experiment. The data includes 20 faults and is shown by the tangent-lineation diagram (Twiss and

Gefell, 1990) with equal-area and lower hemisphere projection. The arrows are plotted in the positions of fault normals. They point to the slip directions of footwall

blocks. Each slip direction was perturbed by angular random error with standard deviation of 158. (b) All solutions generated by the bootstrap iteration (MZ200).

The method of plotting reduced stress tensors is the same as for Fig. 11. (c) The 94% confidence region of the mean solution. The ranges of stress ratios and principal

orientations are almost identical to those of (b), supporting our method of quantifying variance.
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region of the above mean solution. The standard principal radii

(standard deviations) are

V½4� : 0:139; 0:111; 0:083; 0:063ð Þ:

The covariance matrix had some anisotropy that the

maximum principal radius was larger than double the

minimum one. Note that Fig. 12b and c are almost identical

in both orientation and stress ratios, verifying our quantifi-

cation of variance and the assumption of normal distribution of

projected s-vectors on P4
m.
Fig. 13. Results of Monte-Carlo test to compare the present formulation with the con

The abscissa is the standard deviation of random error on the slip directions. (a) Fo

datasets. The maximum radius (
ffiffiffiffiffi
V1

p
) is larger than double the minimum one (

p

especially for noisy data. (b) The stress difference between the mean of bootstrapped

results from 100 datasets. The present formulation resulted in higher accuracy (sm
7.4. Numerical experiment 2

Another numerical experiment was carried out to compare

the precisions of the conventional formulation (Fry, 1999) and

the present one. In the sense of a Monte-Carlo test, we

generated 100 homogeneous fault-slip datasets, each including

100 faults with randomly oriented fault planes. The reduced

stress tensors were randomly chosen on the unit sphere S5 for

each dataset, and the slip directions were calculated according

to the stress. The perturbation was imposed on the slip
ventional one by quantifying the variance and accuracy of deduced stress tensor.

ur principal radii,
ffiffiffiffiffi
V1

p
–
ffiffiffiffiffi
V4

p
, of standard confidence ellipsoid averaged for 100ffiffiffiffiffi

V4). The present formulation performs relatively smaller confidence region,

solutions and the correct solution given artificially. The values are averaged for

aller stress difference to the correct solution).
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directions as random errors of which the standard deviation is

varied from 08 (no perturbation) to 308. The datasets were

converted to f-pole vectors (Fry, 1999) or 3 0-vectors (this

study) and analysed by 200 iterations of the bootstrapped

eigenvector method.

The resultant variances are shown by principal radii of

standard (1Ks) confidence ellipsoids averaged for the 100

cases (Fig. 13a). Both formulations yielded anisotropic

variances. The magnitudes of variance are relatively small

for our formulation, particularly in the case of large

perturbation. To estimate the accuracy of determined stress,

the stress differences between mean solutions and given

stresses were also measured. Fig. 13b shows the stress

differences averaged for 100 cases. Our formulation was

found to have higher accuracy in the case of noisy data. This

difference between formulations can be attributed to the bias

mentioned in Section 6. Since the solution of conventional

analysis in each bootstrap iteration has lower accuracy, the

precision estimated from 200 iterations is also lowered.
8. Summary

The geometrical interpretation of stress tensor inversion was

rearranged to evaluate the difference between stress states by

the distance between points in the parameter space. The

features of the present formulation are as follows:

1. Fault-slip data are represented by strain tensors.

2. Both stress and strain tensors are normalised only by their

basic invariants.

3. The tensors are mapped onto the parameter space with a

common rule to be vectors with their end points on the five-

dimensional unit sphere.

4. A fault-slip datum constrains the vector representing a

stress tensor on a four-dimensional half great circle.

5. The angular misfit between observed slip direction and

resolved shear stress corresponds to the deviation angle of

the vector representing stress tensor from the half great

circle.

6. The Euclidean metric in the parameter space is equivalent

to the stress difference.

Features 4 and 5 are particularly important for composing or

assessing an inversion method. Based on this geometry, Yamaji

et al. (2006) proposed a concise technique to distinguish plural

stresses from a heterogeneous dataset. This paper, meanwhile,

presented a method for quantifying the variance of deduced

stress tensor based on feature 6. In addition, the numerical

experiments showed that the modified formulation performs

relatively higher precision and accuracy in stress determination

than the conventional one. Sato and Yamaji (2006) provide

another usage of the metric in generating a set of reduced stress

tensors with uniform intervals, which can be used as a search

grid to enhance the resolution and the computational efficiency

of inversion.

This study entirely depended on the work of Fry (1999,

2001) for s-space and Orife and Lisle (2003) for the stress
difference. Our parameter space is a modified version of

s-space where the stress difference is embedded as metric.

Since the equality between the metric and the square root of the

second invariant of tensor quantity is valid without the

normalisation of magnitudes of stress and strain, the present

formulation has a potential application in discussing the

mechanics of faulting and the constitutive equations.
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Appendix A. Five-dimensional vector representing devia-

toric tensor

If a symmetric tensor X is deviatoric, its corresponding

vector ðx½6�Z ðF6 Xð Þ indicates a point on the plane P5
p (Eq. (4)).

Then a suitable coordinate rotation, which directs a coordinate

axis normal to P5
p, can make a component of ðx½6� zero. We

adopted the orthonormal tensor:

QZ

1ffiffiffi
3

p
1ffiffiffi
3

p
1ffiffiffi
3

p 0 0 0

K
1

2
K

1

2
ffiffiffi
3

p
1

2
K

1

2
ffiffiffi
3

p
1ffiffiffi
3

p 0 0 0

1

2
K

1

2
ffiffiffi
3

p K
1

2
K

1

2
ffiffiffi
3

p
1ffiffiffi
3

p 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

; (A.1)

to obtain a five-dimensional vector ðx½5� as

x½5�iK1 Z
X6

jZ1

Qijx
½6�
j ðfor iZ 2; 3;.; 6Þ: (A.2)

The first coordinate axis is rotated to be ðpZ ð 1ffiffi
3

p ; 1ffiffi
3

p ; 1ffiffi
3

p ; 0;

0; 0ÞT and the component in this direction is truncated. Since

the other five axes can be freely oriented, the rotation tensor Q

is not unique. Only the first row of Q must be ðp. The five-

dimensional expression ðF5 Xð Þ (Eq. (6)) is the result of the

above rotation and truncation.
Appendix B. Metric in parameter space

Given arbitrary symmetric and deviatoric tensors XA and

XB, the Euclidean distance between corresponding points in the

parameter space is evaluated as
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ðF6ðXAÞK ðF6ðXBÞ

��� ���Z ðF6ðXAKXBÞ

��� ���Z ðF6ðXDÞ

��� ���
Z

1

2
ðX2

D11 CX2
D22 CX2

D33ÞCX2
D23 CX2

D31 CX2
D12

� �1=2

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JIIðXDÞ

p
;

(B.1)

where XDZ fXDijgZXAKXB. The first equal sign in Eq. (B.1)

is supported by the definition of ðF6 (Eq. (1)), since the vector

subtraction is directly the component-wise tensor subtraction.

Note that the difference tensor XD as well as XA and XB is

deviatoric, because JIðXDÞZJIðXAÞKJIðXBÞZ0. Based on

Eq. (8), Eq. (B.1) can be rewritten in the five-dimensional

expression (Eq. 10).
Appendix C. Principal values of normalised stress tensor

The principal values of reduced stress tensors can be

described by the stress ratio:

FZ ðs2Ks3Þ=ðs1Ks3Þ; (C.1)

where s1, s2 and s3 are the principal stresses (s1Rs2Rs3,

compression being positive). The value of F ranges from 0 to

1. The cases FZ0 and FZ1 represent stresses of axial

compression (s1Os2Zs3) and axial tension (s1Zs2Os3),

respectively.

In practice, our normalisations (Eq. (12)) can be achieved by

giving principal values as

s1 Z ð2KFÞ=l; s2 Z ð2FK1Þ=l; s3 Z ðKFK1Þ=l; (C.2)

where

lZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3F2K3FC3

p
: (C.3)

Substituting Eq. (C.2) into the definitions of first and second

invariant, we can confirm the normalisations as follows:

JIðsÞZs1 Cs2 Cs3 Z0 (C.4)

JIIðsÞZKs2s3Ks3s1Ks1s2 Z1: (C.5)

Also in the sign convention that tension is positive, we have

JI(S)ZKJI(s)Z0 and JII(S)ZJII(s)Z1 since S1ZKs3,

S2ZKs2 and S3ZKs1.

The formula of three principal stresses are very similar to

those of Orife and Lisle (2003). They adopted the normal-

isations, JI(s)Z0 and toct(s)Z1, where toct is the octahedral

shear stress, a tensor invariant. Their numerators were identical

to those of Eq. (C.2) and the denominator was

l
0 Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2F2K2FC2

p
; (C.6)

instead of l. This similarity comes from the close relationship

between toct and the second invariant (e.g. Fung, 1965, p. 80):

toct Z

ffiffiffiffiffiffiffiffiffi
2

3
JII

r
: (C.7)
Appendix D. Stress difference

Orife and Lisle (2003) have introduced the stress difference,

a very useful measure of difference between reduced stress

tensors. Their normalisations were different from ours

(Appendix C). In this appendix, an equivalent expression of

stress difference is presented.

We distinguish the reduced stress tensors in two conven-

tions by s[oct] (normalised by JIZ0 and toctZ1; Orife and

Lisle, 2003) and s JII½ � (normalised by JIZ0 and JIIZ1; this

study). Since the principal values of s[oct] and s JII½ � are

different by the factor
ffiffiffiffiffiffiffi
2=3

p
(Eqs. (C.3) and (C.6)), they are

related by

s JII½ � Z

ffiffiffi
2

3

r
s oct½ �: (D.1)

Orife and Lisle (2003) have defined the stress difference

between two tensors sA and sB as

DðsA; sBÞhtoct s
octh i

D

� �
; (D.2)

where s
octh i

D Zs oct½ �
A Ks oct½ �

B . Note that the octahedral shear

stresses of s oct½ �
A and s oct½ �

B have been normalised to be unity,

while that of s
octh i

D is the stress difference itself. Using Eqs.

(C.7) and (D.1), we can rewrite the definition as

D sA; sB

� �
Z

2

3

� �
JII s oct½ �

A Ks oct½ �
B

� �� �1
2

Z JII

ffiffiffi
2

3

r
s oct½ �

A K

ffiffiffi
2

3

r
s oct½ �

B

 !" #1
2

Z JII s
JII½ �

A Ks
JII½ �

B

� �h i1
2

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JII s

JIIh i
D

� �r
; (D.3)

where s
JIIh i

D Zs
JII½ �

A Ks
JII½ �

B , and the equation:

aJIIðsÞZ JIIð
ffiffiffi
a

p
sÞ ðcaR0Þ;

was employed since the second invariant is a quadratic

quantity. Owing to JII(S)ZJII(s), Eq. (D.3) is applicable to

the alternative sign convention that tension is positive.

Consequently, the stress difference corresponds to the square

root of the second invariant of the difference tensor based on

our normalisations (Eq. (17)).
References

Albarello, D., 2000. A resampling approach to test stress-field uniformity from

fault data. Geophysical Journal International 140, 535–542.

Angelier, J., 1979. Determination of the mean principal directions of stresses

for a given fault population. Tectonophysics 56, T17–T26.

Angelier, J., 1984. Tectonic analysis of fault slip data sets. Journal of

Geophysical Research 89, 5835–5848.

Bott, M.H.P., 1959. The mechanics of oblique slip faulting. Geological

Magazine 96, 109–117.

Carey, M.E., Brunier, M.B., 1974. Analyse théorique et numérique d’un
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